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Abstract-For the numerical analysis of shells undergoing finite rotations doubly curved finite shell
elements are developed via the displacement formulation. The derivation starts from a consistent
finite-rotation shell theory which is transformed by a variational procedure into an incremental
formulation. Thus, the non-linearity can be treated by an incremental-iterative technique. The non
linear element matrices are obtained by a tensor-oriented procedure permitting a direct trans
formation of the initial equations into efficient numerical models. Unlike in the usual procedure,
the KIRCHHOFF-LOVE assumption is treated as a subsidiary condition at the element level. This
computer-oriented approach permits the elimination ofthe dependent rotational degrees of freedom
without loss of accuracy. Finally, some examples are presented to demonstrate the ability of the
resulting finite elements to deal with finite-rotation problems.

1. INTRODUCTION

Thin shell structures which are used increasingly in various branches ofmodern technology
may undergo finite deformations, in particular finite rotations. The numerical analysis of
these phenomena is therefore of significant practical importance.

In recent years a number of finite elements have been developed for the non-linear
analysis of shell structures (see e.g. Bathe and Bolourchi, 1980; Surana, 1983; Hughes and
Liu, 1981; Oliver and Onate, 1984), some of them on the basis of tensorial shell theories
(see e.g. Harte, 1982 and Nolte, 1983). In the analysis of strongly non-linear problems they
may, however, lead to significantly different numerical results as has been demonstrated by
the systematic numerical comparisons presented by Nolte (1983). At present, it is not
possible to decide conclusively which numerical models or theories will lead to the most
reliable results if finite rotations are involved. For this reason the development of further
refined finite elements in connection with systematic numerical studies still seems to be
needed. For the development of finite elements applicable to general finite-rotation
problems, which will be referred to finite-rotation elements, special care should be taken
both in the formulation of the theory and in the selection of the mathematical approach,
because only an optimal combination of both can lead to satisfactory high-precision finite
elements.

The non-linear shell theories presented in the literature vary significantly (see e.g.
Pietraszkiewicz, 1984; Koiter, 1966; Shapovalov, 1968; Stein et al., 1982; Bapr and
Kriitzig, 1985). In particular, many of them are simplified theories which are not suitable
for the derivation of finite-rotation elements. In the present derivation we shall use the
theory presented by Ba~ar (1987), adopting the KIRCHHOF-LOVE hypothesis (see Ba~ar

and Kriitzig, 1989; Ding, 1989). In this theory, no simplifications have been made based
on assumptions concerning the order of magnitude of the deformation variables. Thus, it
should be applicable to a wide range of problems. Furthermore, it satisfies the requirements
imposed on consistent formulations and gives a clear physical interpretation of the force
variables. The objective of this paper is the transformation of this theory into a finite
element formulation and to demonstrate its numerical efficiency.

In the derivation offinite elements a tensor-oriented procedure has been adopted which
has also been used successfully for the development of the NACS-family of elements by
Harte and Eckstein (1986). According to this concept the incremental form of the equations
can be directly transformed into efficient numerical models. This concept also permits the
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use ofarbitrary displacement approximations and thus the development ofan entire element
family in a unified consistent manner.

Non-linear terms will be treated by an incremental-iterative procedure, using unbal
anced forces which are calculated from the exact non-linear equations. When these forces
vanish, the non-linear shell equations will be satisfied automatically.

In the development of non-linear finite elements using the KIRCHHOFF-LOVE
hypothesis, the essential problem is the elimination of the rotation vector (the difference
vector) without loss ofaccuracy. In the present formulation, the non-linear KIRCHHOFF
LOVE condition will not be expanded into a TAYLOR-series as has been done, e.g. by
Harte (1982) to ensure an a priori elimination of the rotational variables. In the case of
finite rotations this procedure is inconvenient and introduces errors in the unbalanced forces
appearing in the iteration procedure. Instead, a remarkable accuracy can be achieved if the
conditions in question are considered at the element level. To do this, the KIRCHHOFF
LOVE hypothesis has been expressed by two sets of equivalent conditions. One of them is
used in the form of linear variational equations for the elimination of the incremental
rotational variables. The second non-linear one is needed for the exact calculation of the
rotation vector of the fundamental state. Thus, the rotation vector can be evaluated to the
same degree of accuracy as the displacements and the other kinematic quantities. This
computer-oriented concept ensures very satisfactory results even up to rotational angles of
6200 and is not much more time consuming than the usual a priori elimination of the
rotational degrees of freedom.

The use ofa shell theory instead of the isoparametric concept presents many significant
advantages for the development of efficient numerical models. The consistency of a shell
theory as a two-dimensional approximation can be checked from the theoretical point of
view. In the classical concept, the variables used in the numerical implementation are those
defined on the shell element. Thus, their later transformation into geometrically
interpretable ones is superfluous. In particular, shell theories permit the calculation of the real
force variables acting on the middle surface. For engineering applications, this aspect is
very significant, especially when dealing with finite-rotation problems, where the definition
of geometrically interpretable forces requires special attention (see, e.g. Ba~ar, 1987).
Tensorial shell theories permit, finally, an exact description of the shell geometry. The
calculation of the corresponding geometrical variables is not necessarily much more time
consuming than the approximate description of the shell geometry used in the isoparametric
concept. As has been pointed out in Harte and Eckstein (1986), such an approximation
may cause shape deviations and, thus, significant errors in the analysis of imperfection
sensitive structures.

2. BASIC EQUATIONS OF A FINITE·ROTATION SHELL THEORY

In this section, the basic equations of the geometrically non-linear theory given by
Ba~ar (1987) are presented under the KIRCHHOFF-LOVE hypothesis. Points of the
undeformed middle surface Fare described by the position vector; = ;(0") with convective
curvilinear coordinates 0". Similar to ;, all the geometrical elements associated with the
undeformed state Fwill be denoted by the suffix ("). Thus (see Ba~ar and Kratzig, 1985):

base vectors: a., a·,
metric tensor: Q2/J, (j'{J,

• l8curvature tensor: b.{J, 0;,

unit normal vector: a3'
determinant of Q.{J: a,
CHRISTOFFEL symbols: t~{J'

Suffix-free symbols refer to the deformed state F. Covariant derivatives 'With respect
to the undeformed middle surface F will be denoted by (...)1., partial derivatives with
respect to 0" by (...)." We further introduce along the boundary curve Cof the undeformed
middle surface the unit tangent vector t and the unit outward normal ti

a 0 0 a 02: 0 dr 0 a

U = t X 83 = U.8, t = ds = t.8
2

, (I)
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which form together with a3 a right-handed vector triad (u, i, a) and which will be used for
the definition of the physical boundary variables.

Under the KIRCHHOFF-LOVE hypothesis the state of deformation of the shell is
described by the first and second strain tensors rx.fJ and w'fJ' respectively. These variables
are related to the displacement vector v and the difference vector w

(2)

by the kinematic relations:

rx.fJ = !(Ip.fJ+lpfJ.+Ip.;JP/+lpdPfJ3),
1 o· °l 0 1 0

W.fJ = 2[w.lfJ + wfJl. -b~lpfJ.l -bfJlp•.l -2b.fJ W3 + IpfJ. (W.lI. -b.l.W3)
• 0 ~ ~

+ Ip/"(W.lIfJ -b;.fJH'3) + IpfJ3(W3.• +b.w.l) + 1p.3(W3.fJ +bfJw.l)]

= - [1p.3IfJ +~Ip.P + W3(b.fJ+Ip.3IfJ +~q>.p) + wp(q>.~lfJ -~q>'3)]' (3)

where the abbreviations

(4)

are the so-called deformation gradients. By means of the KIRCHHOFF-LOVE hypothesis
[a.' 83 = (8.' 83)1. = 0], both expressions given above for w.fJ are equivalent. We shall,
however, use in the following the second one which does not contain the derivatives of the
difference vector w.

Again due to the KIRCHHOFF-LOVE hypothesis, the difference vector Wi and
accordingly the rotation vector w. defined by the transformations

(5)

may be expressed in terms of the displacements Vi' The constraints valid for Wi are of the
form (see, e.g., Ba~ar and Kratzig, 1989; Ding, 1989):

with

(7)

They can, however, be replaced by the conditions

which we shall transform into linear variational eqns (19) and (20) in order to eliminate
the incremental components <5Wi = Wi and <5 2WI = +W; at the element level. In contrary, the
first form (6) will be used for the calculation of the difference vector of the fundamental
state Wi' Thus, the simultaneous use of the both sets ofconditions (6) and (19), (20) enables
a very accurate elimination of the difference vector and thus avoids the usual approach of
the difference vector by TAYLOR series (see, e.g., Harte and Eckstein, 1986; Bal8r and
Kratzig, 1985).

For the derivation of the tangent stiffness relation which expresses the equilibrium of
a finite displacement model we employ the principle of virtual work, being in the case of
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c5*A =fL(p'c5v,+p 3c5v 3) dF+t (n'&', +n3&'3 +m'bll",) ds

-fL(iV''PI b'Y.,p +M1,Pl c5w,p) dF = 0, (9)

where

jJ(,{J), M<2{J) = pseudo stress resultant tensor, moment tensor,
ni

, m' = tensorial boundary forces, moments,
/ = load components defined with respect of ai'

dF = element of the undeformed middle surface t,
dS = element of the undeformed boundary curve C.

The second integral in (9) which expresses the virtual work ofconservative boundary loads
may be given alternatively as

(10)

in terms of physical boundary variables (nt, nu , • ••) defined with respect to the orthogonal
vector triad Ii, i and 83 (I). In view of the KIRCHHOFF-LOVE constraints (6), (8), the
component c5wu cannot be prescribed independently along C. We note that the factor
III +W3 = Ilcos w with the angle of rotation w is approximated in the moderate-rotation
theories (Harte, 1982; Ba~ar and Kratzig, 1985) by unity. Its consideration however is of
significant importance for an accurate analysis of finite-rotation phenomena induced by
load couples.

We have finally to formulate the constitutive equations needed for the elimination of
the internal forces jJ<2{J) and M(2{J) in (9). If we assume an isotropic HOOKEAN material
and sufficiently small strains, they are given by

(II)

(12)

Eh
D=--2'I-v

(13)

where h is the thickness of the shell, E is YOUNG's modulus and v is POISSON's ratio.

3. INCREMENTAL FOR.\1ULATION

For an incremental-iterative treatment of the non-linear problem, the equations pre
sented above, in particular the variational principle (9), have to be transformed into
incremental relations by a variational procedure. The derivation can be performed sys
tematically ifwe introduce the following three sets ofdeformation (Fig. I): The initial state
(IS) is the unloaded, undeformed and stress-free reference configuration of the shell. The
fundamental state (FS) is the equilibrium state of the shell under given loads. This state is
supposed to be described by a displacement field t'i satisfying the non-linear principle (9)
approximately. The adjacent state (AS) is a state defined by a displacement field Vi of the
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Xl

J!i9----- Xl

Fundamental state FS Adjacent state AS

form

Fig. I. States ofdeformations.

(14)

where ~Vi = Pi is a special variation. Accordingly, the mechanical variables of this state
which are non-linear functions of Vi may be replaced by infinite power series in terms of the
first- and the higher-order variations, for instance in the form :

(15)

while the deformation gradients q;~{J and q;~3 are given according to (4) by expressions of
the form (14).

Now, we specify the principle (9) for the AS in order to express all the variables of
the AS according to (14) and (15). If we neglect the terms of third and higher order with
respect to the variations Pi and assume that the loads are conservative (pi

=ht = ... = itzu = 0)', we finally obtain

f1(N(2{J)!&2{J+M(2/JlOtJ2/J) dF-ke

+ ~f1(N(2{J)o+(t2/J+M(~)O+cJ~/J) dF+t [(1 :~3)2 (mtotJt+muotJu)

- 2(1 ~W3) (mto+cJt +muot1'u)] cIS- kg

=f1(P~OPII +p30p3) dF+1[ntOPt+nUOPU+n3ot;3

+ -1_1_ (mtotJt+muotJu)] cIS - Pc
+W3

(16)

where 0 implies a variation with respect to Pi' This equation contains all submatrices of the
tangent stiffness relation, namely the elastic matrix ke, the geometric matrix kl , the vector
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of external nodal forces Pe and the vector of internal nodal forces PI' The last two variables
Pe and Pi occurring at the right-hand side are the so-called unbalanced forces to be iterated
to zero in the iterative procedure.

The constraints to be satisfied by the incremental variables appearing in (16) can be
derived by a unified variational procedure. From (3), we find for instance

a,ali = -[(1 +w3)($a311i+~$al')+wl'($/lfJ-~$a3)

+ (bali +tp,3lp +~q>'P)W3+ (q>,~lfJ-~q>'3)WI'] (17)

and

The variations of the difference vector Wi and +W; occurring in this relation are, in view of
(8), subjected to

and

where

WI'I/ = -[$/WI'+$.3(1 +W3)],

W3(1 +W3) = -wa~ (19)

(20)

(21)

These equations, which are linear in the variational quantities Wi and +W;, will be used in
the finite element implementation for the pointwise calculation of the shape functions of
Wi and +wi. For evaluation of the fundamental state variables Wi and l",~ entering in these
relations, we shall employ the exact non-linear equations (6), (7) and (21) which can
therefore be satisfied by a suitable iteration in every desired order of accuracy.

Finally, we give the incremental constitutive equations which are in accordance with
(11) of the form:

(22)

All further incremental relations can be established by a similar procedure and will not be
presented here.

4. DEVELOPMENT OF ELEMENT MATRICES IN TENSOR FORMULAnON

In order to develop the element matrices from the incremental principle (16) we employ
the tensor-oriented procedure which has been used for the derivation of the NACS-family
ofelements by Harte and Eckstein (1986). Accordingly, the following relations are presented
in index form rather than in the more classical matrix notation. This has the advantage
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that the formulation of the shape functions and the element matrices is much more trans
parent and exhibits the mechanical significance of these variables quite clearly.

According to the finite element displacement method we approximate the unknown
displacement iii by shape functions vt and associated nodal displacements "D N

• This can be
expressed in the form :

NN

ii~ == L v:ii N,
N-I

(23)

Here, the upper index N refers to the finite element formulation while NN gives the number
of degrees of freedom. The usual partial differentiation of t'~ and rJ leads to the shape
functions of the partial derivatives ii.,/l and ii3,/l:

NN NN
+ ~ ( N) +N ~ N +N
v~,/l == L. v. ,(Iv == L. v•.{lv ,

N-I N-I
NN NN

+ ~ (N) +N ~ N +NV3.{I == L. V3 ./lv == L. V3,/lV ,
N-I N-I

(24)

From now on, the derivation of all further shape functions can be carried out via tensor
calculus by applying the tensorial equations established above. Inserting, for instance, (23)
and (24) into the well-known relationship

(25)

we obtain the shape functions of the covariant derivatives v:I{I' For the derivation of the
shape functions of the deformation gradients we first transform relations (4) into incremen
tal equations. Using equations (23), (24) and (25), this gives:

NN NN
+ ~(NI" N)+N ~ N+N({Jrtp == L. vp ~ - 0p",v3 v == L. ({J.p v ,

N-I N-I

NN NN
+ ~ ..N fJ. N)+N_ ~ N+,N
({J~3 == L. (V-3,~+U~VJ. V - L. ({J.3 1i •

N-I N-I

The shape functions of the dependent variables Wi are defined by

NN NN
+ ~ .. .N+N + ~ _..N+N
wjI == L. WjI V, W3 == L. W3 V •

N-I N-I

(26)

(27)

In order to find suitable equations for their calculation we substitute (26) and (27) into
relations (19). In view of the arbitrariness of the quantities P, this leads to

(28)

These equations can be solved at each integral point for the values N == 1,2, ... , NN to give
the corresponding values of wt. By a similar transformation of the variational equations
of second order (20), suitable relations can be obtained for the pointwise determination of
the shape functions W:N

:

NN NN
++ ~ ~ .MN+M+N
WP == L. L. wp· v v ,

M-IN-I

NN NN

V3 == L L wt·"t.viiN•
M-IN-I

(29)

Considering equations (26), (27) and (28), relations (17) and (18) can now be transformed
into:
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NN

6J.P = - L [(1 +W3)(1p~3Ip+~IpZ,)+»-,p(Ip~plp-bpplp~3)
N=I

NN NN

= L L w~'ttMtN
M-IN-I

(30)

where w~ and W:f,N are the shape functions. All variables of the FS appearing in the above
relations have to be calculated from the exact non-linear equations of the finite rotation
theory.

The other shape functions can be developed using a similar procedure. Substituting
the corresponding expressions into (16) we first obtain:

y

~N
I

(31)

y

pf

and hence

NN NN
L (k:'N +k:lN) t M =p: -pf -+ L ~NtM = l!.pN, N = 1, ... , NN (32)

M-I M_I

which represents the well-known stiffness relation of the geometrically non-linear finite
element in terms of the following submatrices:
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k:fN = elastic stiffness matrix,k:N = geometric stiffness matrix,
p: = vector of external nodal forces,
p~ = vector of internal nodal forces,

kttN = tangent stiffness matrix,
11~ = vector of unbalanced forces.

Due to the index-oriented formulation, the matrices given in eqn (31) have a very transparent
form and show exactly the operations to be performed for their derivation. This is a
significant advantage, in particular, for the numerical implementation.

The assembly of the so developed element matrices into the global stiffness matrix of
the complete shell structure can be performed in a standard manner. After evaluation of
the displacements Pi from (32), the displacements Vi = Vi+ Pi defining the FS of the sub
sequent iteration step have to be constructed in order to calculate the corresponding internal
kinematic and force variables form the exact non-linear equations. It should, however, be
mentioned that the internal forces occurring in the constitutive eqns (22) are pseudo
variables which cannot be directly interpreted on the element level. For practical appli
cations therefore, they have to be transformed into physical components N(<</J) and M(<<{J)

which are true force variables measured per unit length of the deformed coordinate lines
fJ" = const. The corresponding transformations are given by Ba~ar (1986, 1987).

In accordance with the concept adopted for the finite element derivation, the inte
grations occurring in (31) have to be performed numerically. Replacing the surface and line
elements dF and ciS by the well-known expressions

the elastic stiffness matrix defined in (31) takes, for instance, the form :

1I

= L eN(2{J)Mla.~+IM(<<{J)MI(J)~)fiIWA',
I-I

where

(33)

(34)

I = actual point of integration,
II = number of integration points per element,

I( ) = value of a variable at I,
I W = weighting coefficient at I,
A' = area of the finite element with straight edges in the plane fJ".

From (34) we see that the exact values of the geometrical variables a«{J' b«fj, ... can be
considered at every integral point I. This ensures a very accurate representation of the shell
geometry and-due to a similar treatment of the factor Ja-of the area Fof the curved
finite element as well. The present tensor-oriented development of finite elements permits
one to use the original non-linear shell theory in connection with various shape functions
(23) for the displacements P« and P3' For the derivation of the triangular and rectangular
curvilinear finite elements, of thefinite-rotation element/amily, the HERMITE-polynomials
shown in Table I have been used. A detailed discussion of their convergence behaviour is
given by Harte (1982) and Harte and Eckstein (1986).

5. NUMERICAL RESULTS

A large number ofexamples has been analysed by the finite-rotation elements presented
above. In the following, three examples are given to demonstrate their applicability to
strongly non-linear situations.
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Table I. Family of finite-rotation elements

FINITE - ROTATION ELEMENT

27 36 63

Polynomials ~
ZIENKIEWICZ ZIENKIEWICZ COWPER } BELL } bicubiC

} I_BAZELfY COWPER 11970 I 11969J
HERMITE-

II al.(1965) J poly"omials

Degrees of Vi Vi.a Vi VI.a V3.cr{J Vi VI.a VI.<z{J
VI Vi.a VI.cr{J

Vi Vi.a Vi.12
freedom Vi."

3x9 3x12 3x18 3x18 4x123x3
Points of 12 21 21 21 16int ration

The triangular cantilever plate under a concentrated load couple (Fig. 2) has been
analysed up to a load level for which the free end B undergoes a rotation of540°. Comparison
ofthe numerical results with the available analytical solution shows the remarkable accuracy
of the finite-rotation elements used (Fig. 3). Even when the behavior becomes exceedingly
non-linear the numerical errors are almost negligible ( < 1%). The analysis of this example
and the following ones has been performed by the finite-rotation element 54 (Table 1).

The factor 1/(l +w3) occurring in the incremental principle (16) tends to infinity for
Cl) - +n/2. This causes, however, no numerical difficulties in the analysis. Even for the load
level corresponding to a theoretical rotation angle Cl) =90°, the computation had led to a
very accurate value Cl) = 89.97°.

The spherical shell (Fig. 4) under a concentrated load has been used by Nolte (1983)
for a systematic comparison of finite elements based on various non-linear shell theories of

M=fbm

~A BJI ~l +-:o.6.~:h
'i~,-----1 . b • O,31Sm

~
2 h .. O,03m

-+- I .. 11.2Sm

boI~ J 4 ~ E. 30.106kN/m
2

-I-
bl2 v .. O

e1 M.. fbm
1 3 5 1 9 n 131511· rEIg

Finite-Element Model m·-6b.lnl1-1/12J
.. 203.9S6206kNniIh

810 1418

f ..0.2

- analytical solution
""0.8 0 FE -results

deformed shapes of the structure

Fig. 2. Triangular cantilever plate subjected to a load couple.
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Load factor f

1.6

93

1.4

1.2

1.

0.8

0.6

0.4

0.2

-analytical solution
o FE-results

o.OI+-O;::::;;,...,.....,--r---r-,--.-r...--.-,--,.--r-.---r--r-,--,--r
M W W ~ ~ ~ M W M M m

Displacements ~x8 Irn J and ~ZB 1m)

Load factor f

-analytical solution
o FE- results

4 0 560 640
Rotation angle Wa I 0 I

Fig. 3. Numerical results of triangular cantilever plate subjected to a load couple.

different orders of accuracy. In the whole non-linear domain, our results are in full agree
ment with those obtained by Nolte (1983) on the basis of his own finite-rotation theory.
This can be seen as a confirmation of the accuracy of both formulations. Another remark
able result is the fact that the OONNELL-MARGUERRE theory, which represents the
simplest approximate non-linear shell theory, may give better results than the moderate
rotation theory given by Ba~ar and Kratzig (1985) and Harte (1982). It seems that in this
example the assumptions involved in the DONNELL-MARGUERRE theory are better
satisfied than those adopted for the derivation of the moderate-rotation theory in question.
This shows the importance of using finite-rotation elements rather than moderate-rotation
ones when dealing with arbitrary non-linear phenomena.

Figure 5 shows a hyperbolic paraboloidal shell supported at i.he two single points A
and B in such a way that it can undergo displacements in the corresponding normal
directions 83' The loading consists of two opposite point moments which upon increasing
will cause the two supports to approach each other. This leads to a considerable vertical
displacement as well as to considerable bending stresses in the neighborhoods of the
supports. For f = 7.0 the rotation of the support points amounts to an angle of co = 620'
while the vertical displacement of the upper point D reaches the value v(3) = 18.57 m which
is comparable to the span AB = 27.40 m (Figs 6, 7). This highly non-linear problem is
also characterized by quasi-inextensional bending which is known to be numerically very
sensitive. The triangular finite element 54 (Table I) used here was capable of dealing with
this problem without any numerical difficulties. Figure 6 shows the deformed configurations
of section (}2 = 0 for different values of f. In Fig. 7 numerical results are presented for
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Finite - Element Model

Load P [kN/m)

R = 1000m
h = 1.0 m
E = 10'kN/m2

V =1/3
hinged edge

600

+ Donnell. Margverr. theory
.0. Thoory 01 mod....te rolotion by BaSI' and K,iitzlg (1985)
o Th.oryo"lnl,. rolollon by Nolt. (1983)

o Theory of finite rotation: the pr•••nt worlc

2.0 4.0 6.0 8.0 10.0 12.0 14.0
Normal Displacement v3..lm!

Fig. 4. Spherical shell under ring load.

Geometry:

X3 .IX2.X'llx2_X')/40.o

E • 1,0 ·10'kN/rr
a .1O,0m
c. 5,Om
h. O,2m
If. 0.0
M. fmd

m. 5,0 kNm/m ,d .Q.88388m. fa load factor

Finite-Element Model \'9'
Fig. S. Hyperbolic paraboloidal shell subjected to concentrated moments.
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I '.2.0

B

Fig. 6. Defonned shapes of the nonna) section 82 = 0 of a hyperbolic paraboloidal shell.

i J-).8

r-4tl
1.0

0.0 (/

~ 35.0

a

:!.

\3OD mC1D IS

1~ ~~ !lOO ~
i"

1110

OOס11

1300

10.0 200

10 100

00 0 ti'
0 0 Jil ~ rp. ~a

Fig. 7. Numerical results ofa hyperbolic paraboloidal shell.
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c

deformed eonfigultltlon
for f.7.0

Fig. 8. Undeformed and deformed configuration of a hyperbolic paraboloidal shell for I =7.0.

several characteristic variables, again along the coordinate line 62 = O. Finally, a three
dimensional plot of the deformed configuration of the whole shell for f = 7.0 is given in
Fig. 8.

6. CONCLUSIONS

Starting from a consistent, finite-rotation shell theory by Ba~ar (1987) a family of
finite-rotation shell elements has been derived. The element formulation which is based on a
tensor-oriented procedure appears to have the following advantages.

(1) It enables the use ofvarious interpolation functions for the displacement field and thus
a unified derivation of an entire element family.

(2) To derive the element matrices only tensor operations must be performed, once the
shape functions of the displacements and their derivatives have been determined.

(3) Arbitrary shell geometries can easily be considered,

Extended numerical studies indicate that the finite-rotation elements presented here
may be qualified as follows.

(4) Remarkable accuracy may be achieved, even in the treatment ofstrong non-linearities.
In one instance the rotational angle even reached 620~.

(5) In the analysis of pure bending problems membrane locking did not occur.
(6) Due to the accuracy of the undedying theoretical formulation, non-linear phenomena

induced by load couples can be analysed for arbitrary load values. In the case of
moderate-rotation elements by Harte and Eckstein (1986) this is not possible.

As regards the mechanical significance of the results we may state the following.

(7) The numerical results obtained for a spherical cap (Fig. 4) are identical with those of
Nolte (1983) and may thus be regarded as a confirmation ofthe quality ofthe theoretical
formulations presented by Nolte (1983) and Ba~r (1987). Such agreements are rather
exceptional, especially in the strongly non-linear range.
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(8) When short-wave deformation patterns are predominant, moderate-rotation finite
elements may give less accurate results than those derived on the basis of the
DONNELL-MARGUERRE theory, which is the simpliest non-linear shell theory

This last result shows clearly that a reliable analysis of non-linear phenomena should
be performed using finite-rotation elements.
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